A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS)

Nationally Re-Accredited with "A" Grade by NAAC – 4th Cycle (Affiliated to Bharathidasan University, Thiruchirappalli) No.1, College Road, Velippalayam, Nagapattinam–611001, Tamil Nadu, India

DEPARTMENT OF MATHEMATICS

(For the candidates admitted from the academic year 2024-2025)

UG SYLLABUS

2024-2025

PG DEPARTMENT OF MATHEMATICS

(for the candidates admitted from the academic year 2024-2025) B.Sc., Mathematics Programme Educational Objectives (PEO):

PEO 1:	To gain knowledge in fundamental ideas of mathematics and to develop the
	Mathematical thinking.
PEO 2:	To provide the highest level of education in mathematics and to produce competent
	And creative Mathematicians.
PEO 3:	To enable the learners to solve mathematical problems using mathematical techniques.
PEO 4:	To communicate mathematics accurately, precisely and effectively.
PEO 5:	To inculcate the mathematical concepts, intellectual skills, courage and integrity,
	Sensitivity to the needs and aspiration of the society among the learners.

Programme Outcomes (POs): UG

On completion of the course, the learner will be able to

PO 1:	applythebasicconceptsofmathematicstoformulateand evaluatethe real- world
	Problems.
PO 2:	Utilize the mathematical principles to think analytically, systematically and critically While solving problems and making decisions.
PO 3:	Construct the logical arguments and apply the laws of logic in mathematical proofs.
PO 4:	Learn and apply the appropriate methods and procedures in MATLAB, SPSS etc.
PO 5:	Pursue careers in academia, industry and the other areas of Mathematics.

Programme Specific Outcomes (PSO) B.Sc.,

On completion of the course, the learner will be able to

PSO 1:	Identify the applications of mathematics in other disciplines and society.
PSO 2:	Formulate and develop mathematical arguments in a logical manner.
PSO 3:	Able to identify, locate and solve the issue or problem effectively.
PSO 4:	Acquire good knowledge in advanced areas of mathematics.
PSO 5:	Understand and formulate quantitative models arising in social science, business and
	Other contexts.

		1	r	
Part	Category of Courses		Hrs	Total Credits
Part I	Language Courses (Tamil/Hindi/French/Arabic/ Sanskrit)	4	24	12
Part II	English Language Courses	4	24	12
	Core Courses (CC)	15	70	60
Part III	Minor Course	6	24	16
Partin	Discipline Specific Courses (DSC)	3	10	9
	Project	1	3	3
	Skill Enhancement Courses (SEC)	4	8	8
	Ability Enhancement Courses (AEC)	3	6	6
	Multi Disciplinary Courses (NME)	2	4	4
Part IV	Environmental Studies	1	2	2
	Value Education	1	2	2
	Soft Skill Development	1	2	2
	Summer Internship/Industrial Activity	0	0	2
	Gender Studies	1	1	1
Part V	Extension Activity (NCC/NSS/Sports/Any Other Activities)	0	0	1
	Total	46	180	140

CURRICULUM STRUCTURE - UG (SCIENCE) - I Year 2024 Batch Onwards (For B.Sc Mathematics)

EXTRA CREDIT SCHEME STRUCTURE – 2024 - 2027

Courses	Credits	Semester	Marks
tra Credit Courses I(Professional English)	2	Ι	100
ECPEA - ECC I - PROFESSIONAL ENGLISH FOR ARTS AND			
SOCIAL SCIENCES			
(Tamil, English, History, Economics, Mathematics, CS, IT, BCA)			
ECPEB - ECC I - PROFESSIONAL ENGLISH FOR COMMERCE			
AND MANAGEMENT			
(Commerce & BBA)			
ECPEC - ECC I - PROFESSIONAL ENGLISH FOR LIFE			
SCIENCES			
(Zoology, Botany, Biochemistry & Marine)			
ECPED - ECC I - PROFESSIONAL ENGLISH FOR PHYSICAL			
SCIENCES			
(Physics, Chemistry & Geology)			
tra Credit Courses II(Skill Course I – Add on)	2	II	100
tra Credit Courses III(Skill Course II- Add on)	2	III	100
tra Credit Courses IV(Skill Course III- Add on)	2	IV	100
lue added course I (Multidisciplinary)	2	V	100
lue added Course II (Same disciplinary)	2	VI	100
Total	12		

SCHEME OF EXAMINATIONS- 2024Batch (For UG Science)

	SEMESTER – I								
			RS	SLI	EXAM JRATION		AX. RKS		
PART	COURSE TYPE COURSES		HOURS	CREDITS	EXAM DURATIO	CIA	EXT		
Part I	Language Course I	LC I – Pothu Tamil -I	6	3	3	25	75		
Part II	English Course I	ELC I – General English – I	6	3	3	25	75		
	Core Course I	CC I - Differential Calculus And Trigonometry	4	4	3	25	75		
Part III	Core Course II	CC II - Classical Algebra And Theory Of Numbers	4	4	3	25	75		
	First Minor Course I	FMC I - Physics I(T)	4	3	3	25	75		
	First Minor Course II	FMC II - Physics II(P)	2	-	-	-	-		
Part IV	Skill Enhancement Course I	SEC I - Sagemath Programming Lab	2	2	3	40	60		
1 411 1 V	VE	Value Education	2	2	3	25	75		
tra Credit 1	Extra Credit I	Extra Credit Course I - Professional English		2	-	0	100		
		No. of Courses - 7+1	30	21 + 2					

	SEMESTER – II									
			S	IS	1 ION	MAX. N	MARKS			
PART	COURSE TYPE COURSES		HOURS	CREDITS	EXAM DURATION	CIA	EXT			
Part I	Language Course II	LC II - Pothu Tamil -II	6	3	3	25	75			
Part II	English Course II	ELC II - General English – II	6	3	3	25	75			
Part III	Core Course III	CC III - Integral Calculus	4	4	3	25	75			
	Core Course IV	CC IV - Analytical Geometry Of Three Dimensions With Geogebra	4	4	3	40	60			
	First Minor Course II	FMC II - Physics II Practical	2	2	3	40	60			
	First Minor Course III	FMC III - Physics III(T)	4	3	3	25	75			
Part IV	Skill Enhancement Course II	SEC II - Introduction To Python Programming Lab	2	2	3	40	60			
I ult I V	EVS	Environmental Studies	2	2	3	25	75			
tra dit II	Extra Credit II	Extra Credit Courses II(Skill Course I – Add on)	-	2	-	0	100			
		No. of Courses - 8 + 1	30	23 + 2						

	SEMESTER – III								
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION	MA MA CIA	AX. RKS EXT		
Part I	Language Course III	LC III - Pothu Tamil -III	6	3	3	25	75		
Part II	English Course III	ELC III - General English – III	6	3	3	25	75		
Part III	Core Course V	CC V - Differential Equations And Laplace Transforms	4	4	3	25	75		
	Core Course VI	CC VI - Vector Calculus And Fourier Series	4	4	3	25	75		
	Second Minor Course I	SMC I - Mathematical Statistics I	4	3	3	25	75		
	Second Minor Practical I	SMP I - Mathematical Statistics II Practical Using R - Programming	2	-	-	-	-		
Dort IV	Multi Disciplinary Course I	NME I - Mathematics For Competitive Examinations I	2	2	3	25	75		
Part IV	Skill Enhancement Course III	SEC III - Differential Equations Using Sci Lab	2	2	3	40	60		
tra redit III	Extra Credit III	Extra Credit Courses III(Skill Course II- Add on)		2	-	0	100		
		No. of Courses - 7+1	30	21 + 2					

	SEMESTER – IV								
			RS	STI	M HON	MAX. MARKS			
PART	COURSE TYPE COURSES		HOURS	CREDITS	EXAM DURATIO	CIA	EXT		
Part I	Language Course IV	LC IV - Pothu Tamil -IV	6	3	3	25	75		
Part II	English Course IV	ELC IV - General English – IV	6	3	3	25	75		
	Core Course VII	CC VII - Sequences And Series	4	4	3	25	75		
Part III	Core Course VIII	CCVIII - Numerical Analysis	4	4	3	25	75		
	Second Minor Practical I	SMP I - Mathematical Statistics II Practical Using R - Programming	2	2	3	40	60		
	Second Minor Course II	SMC II - Mathematical Statistics III	4	3	3	25	75		
Part IV	Multi Disciplinary Course II	NME II - Mathematics For Competitive Examinations II	2	2	3	25	75		
	Ability Enhancement Course I	AEC I - MATLAB Programming	2	2	3	40	60		
	Summer Internship/Ind. Training	Internship	0	2	-	-	-		
tra redit IV	Extra Credit IV	Extra Credit Courses IV(Skill Course III- Add on)		2	-	0	100		

 No. of Courses - 8 + 1
 30
 25+2

	SEMESTER – V								
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION		AX. RKS EXT		
	Core Course IX	CC IX - Algebra	6	4	3	25	75		
	Core Course X	CC X - Real Analysis	6	4	3	25	75		
	Core Course XI	CC XI - Astronomy	6	4	3	25	75		
	Core Course XII	CC XII - Mechanics	5	4	3	25	75		
Part III	Discipline Specific Elective I	DSE I - C Programming Theory	3	3	3	25	75		
	Ability Enhancement Course II	AEC II - Introduction To Artificial Intelligence	2	2	3	25	75		
	SSD	Soft Skill Development	2	2	3	25	75		
tra Credit V	Extra Credit Courses V	Value added course I (Multidisciplinary)- R Lab with TABULA	0	2	_	0	100		
		No. of Courses - 7 + 1	30	23 + 2					

	SEMESTER – VI								
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION		AX. RKS		
IANI	COURSETTTE	COURSES	ЮН	CRE	EX DURA	CIA	EXT		
	Core Course XIII	CC XIII - Complex Analysis	5	4	3	25	75		
	Core Course XIV	CC XIV - Operations Research With TORA	5	4	3	40	60		
	Core Course XV	CC XV - Graph Theory	5	4	3	25	75		
Part III	Core Course XVI	CC XVI - Project	3	3	3	25	75		
	Discipline Specific Elective II	DSE II - C Programming Practical	3	3	3	40	60		
	Discipline Specific Elective III	DSE III - Mathematical Modelling With Excel	4	3	3	40	60		
Dort IV	Ability Enhancement Course III	AEC III - Quantitative Aptitute	2	2	3	25	75		
Part IV	Skill Enhancement Course IV	SEC IV - Document Preparation System Using Latex	2	2	3	40	60		
Part V	GS	Gender Studies	1	1	3	25	75		
	Extension Activities	(NCC/NSS/Sports/Any Other Activities)	-	1	-	-	-		
tra Credit VI	Extra Credit Courses VI	Value added Course II (Same disciplinary)- R Lab with TABULA		2	-	0	100		

	No. of Courses – 9 + 1	30	27 +		
			4		

Grand Total – Credit 140 & Extra Credit 12

Controller of Examinations

Semester I

Semester-I/Core Course-I	DIFFERENTIAL CALCULUS AND TRIGONOMETRY	CourseCode:
Instruction Hours:4	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5-Evaluating K6- Creating	
Course Objectives	 The Course aims To inculcate the basics of differentiation and their applications. To introduce the notion of curvatures, circle and radius of curvature. To develop conceptual understanding of evolutes& involutes and polar co-or To acquire the basic knowledge of circular and hyperbolic functions of comp 	
	variables.To develop skill in summing up infinite trigonometric series using appropriat methods.	
UNIT	CONTENT	HOURS
UNIT I	Successive Differentiation: Successive Differentiation – The derivative – Standard Results– Fractional expressions– Trignometrical transformation–Formation of equations involving derivatives–Leibnitz formula for the derivative of a product–A complete formal proof for induction–Examples. (Chapter III: Sec 1.1–2.2)	15 Hours
UNIT II	 Envelopes, Curvature of plane curves: Curvature – Circle, radius and centre of curvature – Cartesian formula for the radius of curvature. (Chap.X: Sec 2.1-2.3) 	15 Hours
UNIT III	Envelopes, Curvature of plane curves, Maxima and Minima: The coordinates of the centre of curvature – Evolute & Involute – Radius of curvature when the curve is given in polar coordinates – p- r equations: pedal equation of a curve –Maxima and Minima– Theorems (without proof)–Problems. (Chap.X: Sec 2.4-2.7 & Chap.V: Sec 1.1-1.3)	15 Hours

UNIT IV	Hyperbolic functions:Introduction-Hyperbolicfunctions-Relationsbetween hyperbolic functions corresponding to relationsbetween circular functions - Inverse hyperbolic functions.(Chap.IV: Sec. 1-2.3)	15 Hours
UNIT V	Summation of Trigonometric series:Logarithms of complex quantities-Method ofDifferences - Angle arithmetic progression method-Gregory's series. (Chap.V: Sec 5 & Chap.VI : Sec 1-2,3.1)	15 Hours

- 1. T.K. Manickavachagam Pillai, S.Narayanan, Calculus Volume I, S.V. Publications, Chennai, 2019.
- 2. S. Narayanan, T.K. Manickavachagam Pillai, Trigonometry, S. Viswanathan Pvt. Ltd and Vijay Nicole Imprints Pvt. Ltd, 2010.

Reference Books:

- 1. S. Arumugam and Isaac, Calculus Volume I, New Gamma Publishing House, 1991.
- 2. S. Arumugam, Isaac, Thangapandi, Trigonometry and Fourier series, New Gamma Publications, Revised Edition, 1999.

Web–Resources:

https://nptel.ac.in

Course Outcomes:

On completion of the course, students able to

CO1: Apply Leibnitz's Theorem for finding the nth derivative of product of functions.

CO2: evaluate envelopes and curvatures of plane curves.

CO3: Compute maxima and minima of plane curves.

CO4: Interpret the relation between circular and hyperbolic functions.

CO5: find the sum of infinite series.

CO/PO		РО					PSO)		
	1	2	3	4	5	1	2	3	4	5
CO1	М	S	М	М	М	S	S	S	S	М
CO2	S	S	М	М	Μ	М	М	S	S	М
CO3	М	S	М	М	Μ	М	S	М	W	М
CO4	М	М	М	W	М	М	М	S	S	М
CO5	М	М	М	W	М	М	М	S	S	М

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

S -- Strongly Correlated

M – Moderately Correlated

W -- Weakly Correlated

N – No Correlation

Semester-I/Core Course II	CLASSICAL ALGEBRA AND THEORY OF NUMBERS	Course Code:
Instruction Hours:4	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5-Evaluating K6- Creating	
Course Objectives	 The Course aims To lay a good foundation for the study of Theory of Equations. To train the students in operative algebra. To study the Descarte's rule of sign. To know the applications to Maxima and minima To understand the theory of numbers 	
UNIT	CONTENT	HOURS
UNIT I	Theory of equationsForming the equations with the given roots – Relation betweenthe roots and coefficients – Symmetric functions of the roots–Sum of thepowers of the roots of an equation (Textbook 1- Chapter 6 : Sec 9 - 13)	12 Hours
UNIT II	Theory of equations. Newton's theorem on the sum of the powers of the roots -Transformations of equations – Diminishing, Increasing & Multiplyingthe roots by a constant – Reciprocal equation -(Textbook 1- Chapter 6 : Sec 14–17)	12 Hours
UNIT III	Theory of equationsForm of the quotient and remainder when a polynomial isdivided by a Binomial –Removal of terms –Transformation in General -Descartes' rule of signs. (Textbook 1 - Chapter 6 : Sec.18,19,21 & 24)	12 Hours
UNIT IV	Inequalities Inequalities – Elementary Principles – Geometric and Arithmetic means – Weirstrass inequalities – Cauchy's inequality – Applications to Maxima and Minima.(Textbook 2 – Chapter 4)	12 Hours
UNIT V	Theory of NumbersTheory of Numbers – Prime & Composite numbers – divisors of agiven number N – Euler's Function $\phi(N)$ and its value – The highestPower of a prime P contained in N! – Congruences – Fermat's, Wilson's& Lagrange's Theorems. (Textbook 2- Chapter 5)	12 Hours

- 1. T.K.M. Pillai and S. Narayanan, Algebra Volume I, S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2019.
- T.K.M. Pillai, S. Narayanan and K.S. Ganapathy, Algebra Volume II, S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2015.

Reference Books:

- 1. M. L. Khanna, Algebra, Jai PrakashNath & Co, 1974.
- 2. K. Balakrishnan and N. Ramabathran, Text Book of Modern Algebra, Vikas Publishing House Pvt.Ltd, 1978.

Web–Resources: <u>https://nptel.ac.in</u>

COURSE OUTCOMES:

On completion of the course, students able to

CO1: Know the foundation of Theory of Equations.

CO2: Applying the skills to solve problems in operative algebra.

CO3: Evaluate the quotient and remainder in polynomial division.

CO4: Apply the Weirstrass and Cauchy inequalities.

CO5: Interpret problems under congruences

CO/PO			РО					PSO)	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	W	S	S	S	S	S	М
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

S-Strongly Correlated M-Moderately Correlated

W-Weakly Correlated

N–No Correlation

Semester-I / SEC I		SAGE MATH PROGRAMMING LAB	Course Code:		
Instruction Hou	urs: 2	Credits: 2	Exam Hours: 3		
Internal Marks	: 40	External Marks: 60	Total Marks: 100		
Cognitive Level	K 1 - Recalling K2 - Understa K3 - Applying K4 - Analyzing K5 – Evaluatin K6 - Creating	nding			
Course Objectives		ectives op a sage math program in differential calc D and 3D shapes using sagemath	ulus and trigonometry.		
UNIT	0	CONTENT	Hours		
Programs	 Find the r Find the i Find the i To resolve Solve the Solving E Solving E To calcula Find the f To find the Find the f To calcula To calcula	<u>.org</u> Computation with Sage by Paul Zimmerma	ons to SAGE		

Semester II

Semester-II/ Core Course-III (CC)	INTEGRAL CALCULUS	Course Code:
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level Course Objectives	 K1-Recalling K2 –Understanding K3-Applying K4-Analyzing K5 – Evaluating K6-Creating The Course aims To inculcate the basics of integration. To study some applications of definite integrals. To know the techniques for integration. To find area under plane curves using integration. To understand the consequences of beta and gamma function. 	
UNIT	CONTENT	HOURS
UNIT	Integration:	12 Hours
UIIII	Revision of all integral models–Simple problems.(Chapter 1:Sec 1 to 7)	12 110015
UNITII	Integration: Definite integrals –Integration by Parts, Reduction formula, Bernoulli's Formula. (Chapter 1: Sec 11,12,13 & 15.1)	12 Hours
UNITIII	Geometrical Applications of Integration: Area under plane curves-Cartesian co-ordinates-Area of a closed curve - Examples –Areas in polar co-ordinates. (Chapter 2: Sec 1.1, 1.2,1.3 & 1.4)	12 Hours
UNITIV	Multiple Integrals Double integrals-Changing the order of Integration-Triple Integrals. (Chapter 5: Sec 1,2.1,2.2,3.1 & Sec 4)	12 Hours
UNITV	Improper Integrals: Beta and Gamma FunctionsBeta & Gamma functions and the relation between them–Integration using Beta & Gamma functions.(Chapter 7: Sec 2.1 to 2.3, 3, 4 & 5)	12 Hours

1. S. Narayanan and T.K. Manickavasagam Pillai, Calculus Volume II, S.Viswanathan (Printers & Publishers) Pvt Ltd, Chennai, 2017

Reference Books:

- 1. Shanti Narayan, Differential & Integral Calculus, 10th Revised Edition, S.Chand & Co.Ltd, 1962.
- 2. Shanti Narayan, P.K.Mittal, Integral Calculus, S. Chand & Co.Ltd, 2005.

Web–Resources: <u>https://nptel.ac.in</u>

Course Outcomes

CO1 CO2 CO3 CO4 CO5	:	Solve integrals by using integration by parts rule. find the area of plane curves using Cartesian and polar coordinates. evaluate the area by changing the given order of integration, multiple integrals.
CO5	:	Understand the concepts of Beta and Gamma functions.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

S-Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

N–No Correlation

Semester II / CC IV	ANALYTICAL GEOMETRY OF	Course Code:
	THREE DIMENSIONS	
	WITH GEOGEBRA	
Instruction Hours:	Credits:4	Exam Hours: 3
3 (theory) + 1 (practical)		
Internal Marks :40	ExternalMarks:60	Total Marks: 100

Cognitive Level Course Objectives	 K 1 Recalling K 2 Understanding K 3 Applying K4 Analyzing K5 Evaluating K6 Creating The Course aims Necessary skills to analyze characteristics and properties of the dimensional geometric shapes. 	
	 To present mathematical arguments about geometric relation To solve real world problems on geometry and its applicatio 	-
UNIT	Content	No.of Hours
I	The Plane Coordinates in Space –Direction cosines of a line in space –Angle between lines in space –Relation between direction cosines - Equation of a plane in normal form –Angle between planes– system of planes (Chapter 1 : Sec 1.5 to 1.7, Chapter 2 : Sec 2.1 to 2.3, 2.5)	Hours
Ш	The Straight line Representation of a line- Equation of the line through a given point drawn in given direction – Equation of a line through two points- two forms of the equation of a line – transformation from the unsymmetrical to the symmetrical form-Angle between line and space- condition for aline to lie in aplane- coplanar lines- condition for coplanarity (Chapter 3: Section 3.1 - 3.4)	
Ш	The Sphere General equation of a sphere- Sphere through four given points - Plane section of a sphere- Intersection of two spheres – sphere with a given diameter- sphere through given circle – Equation of a tangent plane (Chapter 6 : Sec. 6.1 to 6.4, 6.6)	Hours
IV	The Cone and CylinderEquation of a cone with conic as guiding curve- Envelopingcone of a sphere- Quadratic cones with vertex at origin -Equation of a Cylinder – Enveloping cylinder	Hours

	(Chapter 7 : Sec. 7.1.1 to 7.1.3, 7.7.1, 7.7.2)	
V	Geogebra Programming:	Hours
	Comparison of Geogebra math Apps- Introduction- Explore	
	the App – perspective and views- tools- commands- style bar-	
	settings- tips and tricks for algebraic input- renaming objects-	
	inserting static text- inserting pictures- saving Geogebra files	
	www.geogebra.org	

- 1. Shanthi Narayanan and Mittal P.K, Analytical Solid Geometry, 16th Edition, S.Chand & Co., New Delhi, 2016.
- 2. S.Arumugam and A.Thangapandi Issac, Analytical Geometry 3D and Vector Calculus, New Gamma Publication House, Palayamkottai, 2017.

Reference Books:

S.G. Venkatachalapthy, Analytical Geometry, Margham Publications, Chennai, 2013.

Web–Resources: <u>https://nptel.ac.in</u>

Course Outcomes

On Completion of the Course, Students should be able to

- CO 1: understand and apply the concept of system of planes
- **CO 2:** find angle between two planes and to solve coplanar lines
- **CO 3:** to solve the problems on sphere
- CO 4: to solve the problems on cone and cylinder
- **CO 5:** understand the mathematical software geogebra

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
C01	S	S	М	Μ	Μ	М	М	S	S	Μ
CO2	S	S	М	М	Μ	М	М	S	S	Μ
CO3	S	S	М	М	Μ	Μ	М	S	S	Μ
CO4	S	S	М	Μ	Μ	Μ	М	S	S	М
CO5	S	S	М	Μ	Μ	М	М	S	S	Μ

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

S-Strongly Correlated

M-Moderately Correlated

W-Weakly Correlated

N–No Correlation

Semester-II / SH	ECII	INTRODUCTION TO PYTHON PROGRAMMING LAB	Course Code:	
Instruction Hou	ırs: 2	Credits: 2		
Internal Marks	: 40	External Marks: 60	Total Marks: 100	
Cognitive Level	K 1 - Recalling K2 - Understa K3 - Applying K4 - Analyzing K5 – Evaluatin K6 - Creating	ç		
	The Course Obje	ectives		
Course		p a python program in integral calculu	s and analytical geometry	
Objectives	To compute	te area of polygons using python.		
UNIT		CONTENT		Hours
Programs	 Checking Calculating Calculating Finding the Computing Comp		h two points	
	 <u>www.sagemath</u> Introduction to I 	<u>.org</u> Problem Solving with Python, E. Balag	urusamy,TMH, 1 st , 2016.	

Semester III & IV

Semester-III/ Core Course-V	DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS	Course Code:
Instruction Hours: 4	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level Course Objectives	 K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating The Course aims To study the higher order linear differential equations with constant coefficient To find the solutions of linear differential equations with variable coefficient To acquire the knowledge of complete, singular and particular integrals of fine To compute solutions of PDEs using Charpits method. To gain the basic knowledge of Laplace transforms and its inverse with application 	s. rst order PDE.
UNIT	CONTENT	HOURS
I	Linear Differential equations with constant coefficients The Operators D and D ⁻¹ -Evaluation of particular integral of e^{ax} , cos ax ,sin ax , x^k where k is a positive integer (Chapter 2:Sections 1 to 4).	12 Hours
II	Linear Differential equations with constant coefficients Linear Equations with variable coefficients - To find the particular	12 Hours
	integral–Equations reducible to linear homogeneous equation – Variation of parameters.(Chapter2:Sections 8 to 10)	
III	 Partial Differential Equations Derivation of partial differential equations -By elimination of arbitrary constants - By the elimination of arbitraryfunctions – Different integrals of partial differential equations - General, particular, complete and singular integral (Geometrical meaning not expected) – Standard types of first order equations (Standard 1 to 4). (Chapter 4: Sections1, 2, 3 and Section 5: 5.1-5.4) 	12 Hours
IV	Partial Differential Equations Equations reducible to the standard forms-Lagrange's equation– Charpit's method. (Chapter 4:Section 5-5.5, Section 6, Section 7)	12 Hours
V	The Laplace Transforms Standard formulae– Some general Theorems (statement only) and Simple Applications – Laplace transform of periodic functions - Inverse Laplace transforms (problems only)–Application to the solution of Second order ordinary differential equations with constant coefficients. (Chapter 5: Sec. 1-8)	12 Hours

T.K.Manickavasagam Pillai and S.Narayanan, Calculus Vol III, S.Viswanathan Printers and Publishers Pvt. Ltd. Chennai, Reprint 2012.

Reference Books:

- 1. M.L.Khanna, Differential Equations, Jai Prakash Nath & Co, Meerut City, 1984.
- 2. M.K.Venkatraman, Engineering Mathematics, The National Publishing Co, Madras, 1984

Web–Resources: <u>https://nptel.ac.in</u>

Cours	Course Outcomes On Completion of the Course, Students should be able to								
	: : :	solve the higher order linear differential equations with constant coefficients solve differential equations by using method of variation of parameters find solutions of first order partial differential equations of the standard forms solve the PDE's using Charpit's method. Apply the techniques of Laplace transform and inverse Laplace transform							

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO	РО						PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	М	М	S	S	М	S	S	S	
CO2	S	S	М	М	S	S	М	S	S	S	
CO3	S	S	М	М	S	S	М	S	S	S	
CO4	S	S	М	М	Μ	S	S	S	S	М	
CO5	S	S	М	М	S	S	М	М	S	S	

S - Strongly Correlated

- **M** Moderately Correlated
- W- Weakly Correlated
- **N– NoCorrelation**

Semester-III/Core Course-VI	VECTOR CALCULUS AND FOURIER SERIES	Course Code:
Instruction Hours:4	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level Course	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5-Evaluating K6- Creating The Course aims • To understand the fundamental concepts of vector differentiation.	
Objectives	• To develop the knowledge of vector integration	
	• To acquire the interpretation of curl of a vector field.	
	• To inculcate the basic concepts of Fourier series.	
UNIT	To know about half range sine and cosine series CONTENT	HOURS
UNIT I	 Vector differentiation: Velocity & acceleration – Level surfaces – The vector differential operator – Gradient of a vector – Direction and magnitude of gradient – Divergence & curl of a vector – Solenoidal &Irrotational vectors . – Formula involving operator–Operators involving twice and problems. (Chapter IV:Section 4– 12) 	15 Hours
UNIT II	Vector integration:Line integral–Conservative field–Volume integral–Surface integral(problems and theorem statement only).(ChapterVI: Section2–5)	15 Hours
UNIT III	Application of vector integration:Gauss Divergence Theorem– Green'stheorem–Stoke'sTheorem(StatementsOnly)– Simple Problems.(Chapter VI: Section 6–10)	15 Hours
UNIT IV	Fourier series:Definition of Fourier series–Fourier series expansion of periodic function with period $2\pi[(0, 2\pi), (0, 2l)]$ (Chapter VI: Sections 1 and 2)	15 Hours
UNIT V	Even and odd functions: Definition of even and odd functions – Properties–Use of these functions in Fourier series– Half range Fourier series – Development in cosine series–Development in sine series. (Chapter VI:Section 3–5)	15 Hours

- 1. T.K.Manickavasagam Pillai and S.Narayanan, Vector Algebra and Analysis, S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 1986. (For units I, II and III)
- 2. T.K.Manickavasagam Pillai and S.Narayanan, Calculus Volume III, S.Viswanathan Printers and Publishers Pvt.Ltd., Chennai, 2004. (For units IV&V)

ReferenceBooks:

- 1. P.R.Vittal and V.Malini, Vector Calculus, Fourier Series and Fourier Transforms, Margham Publications, Chennai, Reprint 2013.
- 2. P.Durai Pandiyan and Lakshmi Durai Pandiyan, Vector Analysis, Emerald Publishers 1986.
- 3. R.Balaji, Transforms and Partial Differential Equations, G.Balaji Publishers, 2005.

Web–Resources:

- 1. <u>https://www.sakshieducation.com/Engg/EnggAcademia/CommonSubjects/MathMethods-Fourier_Series.pdf</u>
- 2. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjqsY2k9NzyAhXR4nMBHYVhBlUQFnoECAcQAQ&url=https%3A%2F%2Fwww.math.ust.hk%2F~machas%2Fvector-calculus-for-engineers.pdf&usg=AOvVaw3UmDgmJIoj7nWOznTeyO7P</u>

Course Outcomes

On Completion of the Course, the students should be able to

- CO1 : explain the concepts of differentiation of vector field.
- CO2 : integrate the vecto rfunctions over curves and surfaces.
- CO3 :compute integrals using Green's theorem, Stoke's theorem and the divergence theorem.
- CO4 :solve the wave equations, Laplace equations using Fourier series
- CO5 : derive the Fourier Series to the periodic signals in half range.

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
C01	S	S	M	W	S	S	M	S	S	S
CO2	S	S	М	W	S	S	М	S	S	S
CO3	S	S	М	W	S	S	S	S	S	М
CO4	S	S	М	W	S	S	М	М	S	S
CO5	S	S	М	W	S	S	S	М	S	S

S-StronglyCorrelated

M-ModeratelyCorrelated

W-WeaklyCorrelated N–NoCorrelation

Semester III / SMC I	MATHEMATICAL STATISTICS I	Course Code:
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks :25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	 K 1 Recalling K 2 Understanding K 3 Applying K4 Analyzing K5 Evaluating K 6 Creating The Course aims To equip the knowledge of probability. To acquire knowledge about one dimensional random variables To impart knowledge about two dimensional random variables To impart the knowledge about mathematical expectation. To study the discrete probability distributions. 	5.
UNIT	Content	No.of Hours
I	Theory of Probability Probability – Mathematical and Statistical Probability, Axiomatic approach to Probability - Addition and multiplication theorem (two events only) – Baye's theorem– Simple problems.	12 Hours
II	One Dimensional Random Variables Random variables – concepts – one dimensional random variable – discrete and continuous r.v – probability mass function – probability density function – distribution function – Simple problems.	12 Hours
Ш	Two Dimensional Random Variables Two dimensional random variables – discrete – continuous random variables – marginal, conditional probability functions – Simple problems.	12 Hours
IV	Mathematical Expectation Mathematical expectation – definition – properties of expectation (with proof). Moments – relation between raw moments and central moments only– their relations. Variance –properties of variance, covariance (concept only) – Simple problems – conditional expectations and conditional variance (concept only) – Simple problems.	12 Hours
V	Discrete Probability Distributions Concept of Moment Generating Function (m.g.f)- Cumulant Generating Function (c.g.f)- Characteristic function. Binomial and Poisson distribution – definition – moments- mean and variance only - recurrence relation for the moments – Moment generating function - Characteristic function - Simple problems only.	12 Hours

Text Book	S.C. Gupta & V.K.Kapoor, Fundamentals of Mathematical Statistics- Sultan Chand							
	and Sons,11th Edition ,2014							
	Unit I: Chapter 3 - 3.1, 3.3, 3.4, 3.5, 3.9, 3.9.1, 3.9.3, 3.11, 3.12, 3.13							
	Unit V: Chapter 8 - 8.4, 8.4.1, 8.4.2 ,8.4.6, 8.4.7, 8.4.8, 8.5, 8.5.2, 8.5.4, 8.5.5 8.5.6,							
	8.5.7, 8.5.8							
	1. S.P. Gupta, Statistical methods- Sultan Chand and Sons, 45th Edition 2017							
Reference	2. R.S.N.Pillai&V.Bagavathi, Statistics –S.Chand& company LTD, Reprint 2014.							
Books								
e - Resources								
	1. <u>http://www.dcpehvpm.org</u>							
	2. https://pdfbooksforstd.blogspot.com							
Course	CO1:apply the theory of probability							
Outcomes	CO2:utilize one dimensional random variables.							
	CO3:compute two dimensional random variables.							
	CO4:discuss the mathematical expectation							
	CO5:explain discrete probability distributions							

Semester-III/ MDC I	MATHEMATICS FOR COMPETITIVE EXAMINATIONS I	Course Code:
Instruction Hours:2	Credits: 2	Exam Hours:3
Internal Marks-25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating	
Course Objectives:	 To study the problems on series. To understand the coding and decoding. To learn the problems relating blood relation. To know about the mathematical puzzles. To interpret the logics using venn diagram 	
UNIT	CONTENT	HOURS
Unit I	Series Completion: Number Series – Alphabet Series. (P.No. 139– 159)	6 Hours
Unit II	Coding and Decoding: Letter Coding–Number Coding–Matrix Coding. (P.No. 169– 192)	6 Hours
Unit III	Blood Relation: Deciphering jumbled up descriptions–Relation Puzzle– Coded Relations. (P.No. 220 – 241)	6 Hours
Unit IV	PuzzleTest: Seating / Placing arrangements – Comparison Test.(P.No. 253 –278)	6 Hours
Unit V	VennDiagram Direction Sense Test–Logical Venn Diagram. (P.No.324 –333, 348 – 366).	6 Hours

R.S. Agarwal, A Modern approach to Verbal and Non-Verbal Reasoning, S.Chand& Company Ltd, New Delhi-55.

Reference Books:

- 1. <u>Dinesh Khattar</u>, The Pearson Guide to Quantitative Aptitude for Competitive Examinations, Pearson Publications, 2014.
- 2. Arun Sharma, Teach Yourself Quantitative Aptitude, McGraw Hill Education, 2017.

Web-Resources:

- 1. https://www.splessons.com/lesson/profit-loss-problems/
- 2. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUK EwiQ7pHb9tzyAhWp7HMBHcEbBcEQFnoECAMQAQ&url=https%3A%2F%2Fgradeup.co%2Fquantit ative-aptitude-practice-questions-answers-pdf-i&usg=AOvVaw11iv2GCS3pvGLz9i2Nd48L</u>

Course Outcomes:

On completion of the course the learner will be able to

CO1: solve the problems on series.

- **CO2**: write the coding and decoding.
- CO3: evaluate problems on blood relation
- **CO4**: solve mathematical puzzles

CO5:compute problems using venn diagram.

Semester III / SEC III	DIFFERENTIAL EQUATIONS	Course Code:
	USING SCILAB	
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks :40	External Marks:60	Total Marks: 100

	K 1 Recalling	
Cognitive	K 2 Understanding	
Level	K 3 Applying	
	K4 Analyzing	
	K5 Evaluating	
	K 6 Creating	
Course	The Course aims to understand SCI language and to solve linear differentia	l equations
Objectives	using SCI commands under different methods.	
TINIT		Hanna
UNIT	Lab Exercises	Hours
	1. Solve the First order differential equation $\frac{dy}{dx} = e^{-x}$ with $y = 0$	30 Hours
	for $x = 0$.	
	2. Solve the First order differential equation $\frac{dy}{dx} + e^{-x} y = x^2$.	
	3. Solve the First order differential equation $\frac{dy}{dx} = (4x + y + 3)^2$.	
	4. Solve the Second order differential equation $Y'' = -4y, y(0) = 3$ and $y'(0) = 0$.	
	5. Solve the Second order differential equation $Y'' = 6y-y', y(0)=1$ and $y'(0)=0$.	
	6. Solve the Laplace transform of $f(t) = 3 - 2e^{-t}$	
	7. Solve the Laplace transform of $f(t) = t^2 e^{-3t}$	
	8. Solve the Inverse Laplace transform of $f(t) = \frac{S}{(S^2 + a^2)^2}$	
	9. Solve the Inverse Laplace transform of $f(t) = \frac{S+2}{(S^2+4S+5)^2}$	
	10. Solve the Inverse Laplace transform of $f(t) = \frac{S}{(s+3)^2+4}$	

Semester-IV/ Core Course-VII	SEQUENCES AND SERIES	Course Code:
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6- Creating The Course aims	
Course	 To lay a good foundation for sequences. 	
Objectives	• To study the behavior of monotonic sequences.	
	• To know the concepts of subsequences and Cauchy sequences.	
	• To find the convergence of series using different tests.	
	• To learn about the alternating series and absolute convergence.	
UNIT	CONTENT	HOURS
UNIT I	Sequences: Sequences – Bounded Sequences–Monotonic Sequences – Convergent Sequences – Divergent and Oscillating Sequences.(Chapter3:Sec.3.0–3.5) Sequences.(Chapter3:Sec.3.0–3.5)	15 Hours
UNIT II	Monotonic Sequences: Algebra of Limits–Behavior of Monotonic Sequences. (Chapter3:Sec.3.6&3.7)	15 Hours
UNIT III	Subsequences: Some theorems on limits–Subsequences–Limit points–Cauchy sequences. (Chapter3:Sec.3.8-3.11)	15 Hours
UNIT IV	Series: Infinite series–Cauchy'sgeneral principle of Convergence–Comparison test.(comparison test statement only,no proof). (Chapter4:Sec.4.1&4.2)	15 Hours
UNIT V	Tests of convergence:D Alembert's Ratio test–Cauchy's root test–AlternatingSeries–Absolute Convergence (Statements only for all tests).(Chapter 4: Sections- Relevant part of 4.3 and4.4,Chapter 5: Sec 5.1 & 5.2)	15 Hours

1. Dr.S.Arumugam & Mr.A.Thangapandi Isaac Sequences and Series, New Gamma Publishing House,2002.

ReferenceBooks:

- 1. T.K. Manickavasagam Pillai, T. Natarajan and K.S. Ganapathy, Algebra Vol I, S.Viswanathan Printers & Publishers Pvt.Ltd., Chennai, 2018.
- 2. M.K.Singal and Asha Rani Singal, A first course in Real Analysis, 20thedition, R.Chand and Co., New Delhi.

Web–Resources:

- 1. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUK Ewim0c-</u> YktjyAhXygtgFHQWjDbUQFnoECAMQAQ&url=http%3A%2F%2Fwww.stet.edu.in%2FSSR_Report%2FStudy%2520Material%2FPDF%2FMATHS%2FUG%2FII%2520Year%2F1.pdf&usg=AOvVaw2
- 2. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwibxYSj-

9zyAhUTIbcAHXdWCQ8QFnoECCUQAQ&url=https%3A%2F%2Fpeople.math.osu.edu%2Ffowler.

291%2Fsequences-and-series.pdf&usg=AOvVaw3b6gLzhe84ycqzcCJCSqB5

Course Outcomes:

On Completion of the Course, Students should be able to

CO1 : find the convergence of sequences

qrx17JQoDI4 E8hFnAV1w

- **CO2** : evaluate the limits and describe the behavior of monotonic sequences
- CO3 : interpret the concepts of subsequences and Cauchy sequences.
- **CO4** : discuss the convergence or divergence of series using various tests
- **CO5** : compute the absolute convergence of series.

CO/PO		РО					PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	W	S	S	М	S	S	S
CO2	S	S	М	W	S	S	М	S	S	S
CO3	S	S	М	W	S	S	М	S	S	S
CO4	S	S	М	W	S	S	М	S	S	М
CO5	S	S	М	W	S	S	М	S	S	М

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

S – Strongly Correlated

- M Moderately Correlated
- W Weakly Correlated

N – No Correlation

Semester IV / CC VIII	NUMERICAL ANALYSIS	Course Code:
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level Course Objectives	 K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5-Evaluating K6- Creating The Course aims To introduce the basic concepts of solving algebraic transcendental equat To introduce the basic concepts of solving linear and non-linear equation To understand techniques of interpolation. To understand methods too numerical differentiation and integration. To understand numerical solution of ordinary differential equations. 	
UNIT	CONTENT	HOURS
UNIT I	Solution of algebraic and transcendental equations – Bisection methods – Iteration method – Method of False Position – Newton Raphson method. (Sections : 2.2, 2.3, 2.4 and 2.5)	12 Hours
UNIT II	Finite differences – Forward differences and backward differences – Central differences – symbolic relations and Separations of Symbols – Newton's formula for Interpolations – Interpolation with unevenly spaced points – Lagrange's interpolation formula – Divided differences and their properties – Newton's general interpolation formula.(Sections 3.3, 3.3.1, 3.34, 3.6, 3.9.1, 3.10, 3.10.1)	12 Hours
UNIT III	Numerical differentiation – Using Newton's Forward and Backward difference Formulae – Numerical Integration – Trapezoidal rule – Simpson's 1/3 rule – Simpson's 3/8 rule. (Sections 5.1, 5.2, 5.4, 5.4.1, 5.4.2, 5.4.3)	12 Hours
UNIT IV	Gauss Elimination method – Iterative methods – Gauss Jacobi method – Gauss Seidal method. (Sections 6.3.2, 6.4)	12 Hours
UNIT V	Numerical solutions of ordinary differential equations – Solution by Taylor series – Picard's method of successive approximations – Euler's method – Modified Euler method – Runge – Kutta methods.	12 Hours

TEXT BOOK :

"Introductory methods of Numerical Analysis (Third edition)", by Sastry ,S.S., Prentice Hall of India, New Delhi, 1998.

REFERENCE BOOKS:

- 1 Kandasamy, P., Thilakavathy, K. and Gunavathy, K." Numerical Methods", S, Chand and Co., New Delhi, 1999.
- 2 "Numerical Methods in Science and Engineering" by Dr. M. K. Venkatraman M.A., M.Tech., Ph.D., National Publishing Co., 1997.

Web-Resources:

- https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
- https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11correlation-and-regression

Course Outcomes :

On completion of the course, students able to

- **CO1:** acquire basic knowledge in solving interpolation with equal interval problems by various numerical methods. Estimate the missing terms through interpolation methods.
- **CO2:** apply appropriate numerical methods to solve the problem with most accuracy.
- **CO3:** be able to derive Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule.

CO4: be able to find the solution of linear systems by using Direct methods, Matrix inversion method, Gaussian elimination methods, Gauss-Jordan Method.

CO5: be able to find the find the solution of ordinary differential equation of first order by Euler, Taylor and Runge-Kutta methods.

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO	PO PSO									
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	М	S	S	S
CO2	S	S	М	S	S	S	М	S	S	S
CO3	S	S	М	S	S	S	М	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	М	S	S	S	М	S	S	S

S - Strongly Correlated

M - Moderately Correlated

- W Weakly Correlated
- N No Correlation

Semester IV / SMP I	MATHEMATICAL STATISTICS	Course Code:
	PRACTICAL USING R-PROGRAMMING	
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks : 40	External Marks: 60	Total Marks: 100

	K 1 Recalling				
	K 2 Understanding				
Cognitive					
Level	K4 Analyzing				
	K5 Evaluating				
	K6 Creating				
	The Course aims				
Course	After taking the course, students will be able to				
Objectives	• Use R for statistical programming and computation				
	• Write functions and use R in an efficient way				
	• Fit some basic types of statistical models				
UNIT	Content	No.of			
		Hours			
Programs	Plotting Bar chart				
	Plotting histogram and pie chart				
	• Measures of central tendency -Mean, median, mode				
	Measures of Dispersion- std. deviation, mean deviation				
	• Correlation - Linear models.				
	• Large sample tests				
	• Small sample t- test				
	• Small sample F-test				
	Small sample Chi-square test				
	• ANOVA (one way)				
	ANOVA (Two way)				
	1. Alain F. Zuur, Elena N. leno, Erik H.W.G. Meesters Beginner's C	Buide to			
Reference	Springer, 2009.				
Books	2. Allerhand M. Tiny Handbook of R-Springer Briefs in Statistics, 2				
	 Baayen R. Analyzing Linguistic Data - A Practical Introduction to Statistics usin 2008. 				
	4. Gardener M. Beginning R - The Statistical Programming Language, 2012.				
	5. Jim Albert, Maria Rizzo R by Example, 2012.				
	6. Matloff N. Art of R Programming - A Tour of Statistical Softwar	e Design, 2011.			

Semester IV / SMC II	MATHEMATICAL STATISTICS III	Course Code:
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks :25	External Marks:75	Total Marks: 100

Cognitive Level	 K 1 Recalling K 2 Understanding K 3 Applying K4 Analyzing K5 Evaluating K 6 Creating 	
	K 6 Creating The Course aims	
Course	• To impart the knowledge about the degree of	
Objectives	relationship between variable sand estimate	
	unknown variable from known variable.	
	To acquire knowledge about normal distribution To import the burged days about result areas lines.	
	• To impart the knowledge about exact sampling of	listribution.
	To study large sample tests	
	To study small sample tests	
UNIT	Content	No. of Hours
Ι	Continuous Distribution	12 Hours
	Normal distribution – definition– properties of Normal	
	distribution -mode - median -moment generating function-	
	moments of normal distribution. Uniform distribution –	
	definition- mean and variance.	
II		12 Hours
11	Correlation and Regression Analysis	12 110015
	Correlation (two variables only) – Karl Pearson's Coefficient	
	of Correlation and its properties. Spearman's Rank	
	Correlation Coefficient (repeated and non-repeated). Lines of	
	Regression – definition – properties of Regression	
	Coefficients – Simple problems.	
III	Exact Sampling Distributions	12 Hours
	Sampling distributions – Chi Square, Student's t, F-	

	distribution– definition, derivation of the distribution and its						
	mean and variance only Relationship among t, F & Chi						
	Square distribution.						
IV	Test of hypothesis-null and alternative, type I and type II	12 Hours					
	errors, one tailed and two tailed tests, level of significance,						
	Procedure for testing hypothesis. Test of significance – large						
	sample tests; test of significance for single proportion,						
	difference of proportions, single mean, difference of means -						
	Simple problems.						
V	Small Sample Tests	12 Hours					
	Small sample tests -t-test for single mean, difference of						
	means and paired t- test. F-test for equality of variances - Chi	4					
	square test – test for goodness of fit - test for Independence of	14 A					
	attributes - Simple problems.						
Text Book	S.C.Gupta & V.K.Kapoor, Fundamentals of Mathematical Statistics Sultan Chand and						
	Sons,11 th Edition,2014						
	UNIT I: Chapter 9 -9.2,9.2.1,9.2.2,9.2.3,9.2.4,9.2.5,9.2.6,9.2.7,9.2.8)					
	UNIT III: Chapter 16 -16.1,16.2,16.2.1,16.2.4,16.5,16.5.1,16.5.2,16.7,1 Chapter 15:15.1,15.2,15.3,15.3.1	6.					
	1. S.P.Gupta, Statistical methods-Sultan Chand and Sons, 45 th I	Edition 2017					
Reference	DISCIPLINE DEVOTION						
Books	 R.S.N.Pillai & V.Bagavathi, Statistics–S.Chand & company LTD, Reprin 2014. 						
e - Resources	1. <u>http://www.dcpehvpm.org</u>						
	2. https://pdfbooksforstd.blogspot.com						
Course							
Outcomes	CO1: Compute correlation coefficients and regression equ	uations.					
	CO2: Identify the applications of normal distribution.						
	CO3: Explain exact sampling distribution.						
	CO4: Apply large sample tests.						
	CO5: Use small sample tests.						

Semester- IV/MDC-II	NME II - MATHEMATICS FOR COMPETITIVE EXAMINATIONS II	CourseCode:
Instruction Hours:2	Credits:2	Exam Hours:3
Internal Marks- 25	External Marks-75	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating	
Course Objectives:	 To learn the problems solving techniques for numbers. To study the operations on numbers. To develop arithmetical skills. To know about puzzles. To enhance the facts of logical reasoning 	
UNIT	CONTENT	HOURS
Unit I	Number,Ranking and Time Sequence Test Number Test – Ranking Test – Time sequence Test.(P.No. 417 –432)	6 Hours
Unit II	Mathematical Operations: Problem Solving by Substitution–Interchange of signs and numbers– Deriving the appropriate conclusion. (P.No. 432 –454)	6 Hours
Unit III	Arithmetical Reasoning Calculation based Problem–Data based question–Problem on ages – Venn diagram based questions. (P.No. 459– 474)	6 Hours
Unit IV	Missing Characters Inserting the Missing character. (P. No.475–492)	6 Hours

UnitV	Logical Reasoning	6 Hours
	Data sufficiency–Logical Sequence of Words–Logical Reasoning.(P. No.495 – 506, 455– 458, PartII1-14)	

R.S.Agarwal, A Modern Approach to Verbal and Non-Verbal Reasoning, S.Chand & Company Ltd, New Delhi-55.

Reference Books:

- 1. <u>Dinesh Khattar</u>, The Pearson Guide to Quantitative Aptitude for Competitive Examinations, Pearson Publications, 2014.
- 2. Arun Sharma, Teach Yourself Quantitative Aptitude, Mc Graw Hill Education, 2017.

Web-Resources:

- 1. https://www.splessons.com/lesson/profit-loss-problems/
- 2. <u>https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUK</u> <u>EwiQ7pHb9tzyAhWp7HMBHcEbBcEQFnoECAMQAQ&url=https%3A%2F%2Fgradeup.co%2Fquantit</u> <u>ative-aptitude-practice-questions-answers-pdf-i&usg=AOvVaw11iv2GCS3pvGLz9i2Nd48L</u>

CourseOutcomes:

On completion of the course the learner will be able to

CO1: develop quantitative ability.	
CO2: apply mathematical operations.	
CO3: decipher arithmetical reasoning	
CO4: solve logical reasoning. CO5 : crack competitive examinations.	DUTY

Semester IV / AEC I	MATLAB PROGRAMMING	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks :40	External Marks:60	Total Marks: 100

	K 1 Recalling						
Cognitive	K 2 Understanding						
Level	K 3 Applying						
20101	K4 Analyzing						
	K5 Evaluating						
	K6 Creating						
UNIT	Content	No.of Hours					
	1. Matrix Manipulation	30 Hours					
	2. Program to draw 2 – D Graphs.						
	3. Program to draw sub – plots.						
	4. Program to draw 3 – D Graphs.						
	5. Solving Quadratic Equation.						
	6. To find Binomial Coefficient n_{c_r}						
	7. To generate Fibonacci numbers.						
	8. To solve differential Equation using Bisection Method.						
	9. Solving Algebraic Equations Using Newton Raphson						
	Method.						
	10. Solving System of Equations Using Matlab Codes.						
	11. Numerical solution to find integral using Trapezoidal Rule.						
	12. Numerical solution to find integral using Simpson's 1/3 Rule.						
	13. To Solve Differential Equation Using Euler's Method.						
	14. To solve Differential Equation Using Runge – Kutta Method.						

Semester V&VI

Semester V /	CC IX	ALGEBRA	Course Code:				
Instruction H	ours: 6	Credits: 4	Exam Hours: 3				
Internal Mar	ks :25	External Marks:75	Total Marks: 10	0			
Cognitive Level	K 2 Ur K 3 Aj K4 A K5 E	ecalling nderstanding pplying nalyzing valuating reating					
Course Objectives	The Cou	urse aims Fo acquire the knowledge of basic a	bstract system of mathemat	ics.			
	•	Fo understand the concepts of su nomomorphism. Fo study the algebraic systems wit up to isomorphism. Fo learn the concepts of vector spac Fo explore the concepts of basis and and the inner product space.	h two binary operations an es, subspaces and linear ind	d properties of rings lependence.			
UNIT		Content		No.of Hours			
Ι	groups –	tion –Definitions and Examples Order of an element – Cosets and I s 3.1, 3.5 to 3.8)	s – Subgroups – Cyclic Lagrange's Theorem .	18 Hours			
II	Groups	5.51, 5.5 10 5.67		18 Hours			
	theorem	subgroups and quotient groups – F – isomorphism and homomorphism s 3.9 to 3.11).					
III	Rings Definition rings – C Homomo	on and examples – Elementary pro Characteristics of rings – Subrings – Orphism of rings. s 4.1 to 4.8 & 4.10).	C 71	18 Hours			
IV	Vector s			18 Hours			
	Introduction –Definition and examples – Subspaces – Linear transformation- Span of a set – Linear independence. (Sections 5.1 to 5.5)						
V	Vector s	paces and Inner Product Space		18 Hours			
		Basis and dimension – Rank and N nation – Inner product space.	ullity – Matrix of a linear				

	(Section	s 5.6 to 5.8 & Chapter 6)				
Text Book		rn Algebra by S. Arumugam and A. Thangapandi Isaac., New Gamma Publishing e, Revised Edition, Palayamkottai, 2003.				
Reference Books	1	 R. Balakrishnan& N. Ramapathran, Modern Algebra, Vikas publishing House Pvt Ltd, New Delhi, 1982. S. G. Venkatachalapathy, Modern Algebra, Margham Publications, 2016. 				
Web - Resources	htt	ps://nptel.ac.in				
Course Outcomes	On comp	pletion of the course, the learners will be able to				
	CO 1:	gain the knowledge of sets, mapping, relations, groups and subgroups.				
	CO 2:	interpret the notion of normal groups and isomorphism.				
	CO 3:	analyze the concepts of homomorphism and isomorphism for rings and field.				
	CO 4:	recognize the facts of vector space and linear independence.				
	CO 5:	calculate the basis, dimension, matrix of the linear transformation and inner product space				

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO	Pos					PSOs			
CO/PO	1	2	3	4	5	6	1	2	3
CO1	S	S	М	S	W	-	S	S	W
CO2	S	S	М	S	W	-	S	S	W
CO3	S	S	М	S	М	-	S	S	W
CO4	S	S	М	S	W	-	S	S	W
CO5	S	S	М	S	М	-	S	S	W

S - Strongly Correlated M - Moderately Correlated W - Weakly Correlated N - No Correlation

Semester- V/ Core Course-X	REAL ANALYSIS	Course Code:
Instruction Hours: 6	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level Course Objectives	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating TheCourseaims • To lay a good foundation for real analysis. • To explore the concepts of continuity and discontinuity. • To understand the derivability and itsrelated parameters. • To learn mean value theorems and Taylor's series. • To gain the knowledge of Riemann integration	
UNIT	CONTENT	HOURS
UNIT I	Real numbers Absolute value – Completeness –Some important subsets of R – Representation of real numbers as a point on a straight line –Intervals– Countable andUncountable sets. (Chapter1:Sec5-10)	18 Hours
UNIT II	Limits and Continuity Continuous functions – Types of discontinuities – Algebra of Continuous functions – Boundedness of Continuous Functions – Intermediate value Theorem–Inverse function theorem–Uniform continuity of a function.(Chapter5: Section: 2-8)	18 Hours
UNIT III	Derivatives Introduction–Derivability and continuity–Algebra of derivatives– Inverse function theorem for derivatives–Darboux's theorem–Inverse Trigonometric Functions–Derivatives of Inverse Trigonometric Functions. (Chapter 6 :Sec1-7)	18 Hours
UNIT IV	Mean Value Theorems DISCIPLINE DEVOTION Rolle's Theorem – Lagrange's Mean value theorem – Cauchy's Mean Value Theorem – Taylor's theorem – Taylor Series – PowerSeries expansions of some standard functions. (Chapter 8: Sec1-6)	18 Hours

NIT V	Riemannintegration	18Hours
	Introduction –Riemann Integrability and integral of a bounded	
	functions over finite domain - Darboux's theorem -Another equivalent	
	definition of Integrability and Integral -Conditions of Integrability -	
	Particular classes of bounded integrable functions -Properties of	
	Integrable functions – Functions defined by definite integrals –Mean	
	Value Theorem of integral calculus(Chapter6:6.1-6.9)	

- 1. M.K.Singa land AshaRaniSingal, A first course in Real Analysis, 34 th edition, R.Chand and Co., New Delhi, 2020. (For units I to IV).
- 2. Shanti Narayan, A Course of Mathematical Analysis ,S.Chand and Co., New Delhi, 1962. (For Unit V).

Reference Books:

- 1. Walter Rudin, Principles of Mathematical Analysis, Thirdedition, McGraw-Hill International Company, New York, 1984.
- 2. Robert G.Bartle, Donald R.Sherbert, Introduction to RealAnalysis, Third Edition, Shri Balaji Art, Delhi.

DEVOTION

Web–Resources: https://nptel.ac.in

Course Outcomes

On Completion of the Course, Students should be able to

- CO1 : apply the order completeness property.
- CO2 :differentiate the continuity and discontinuity of functions.
- CO3 : find the derivative of a given function.
- $CO4\;$: demonstrate the mean value theorems.
- CO5 : interpret the integrability

Mapping of course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO			РО			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	W	М	S	S	S	S	М
CO2	S	S	S	W	М	S	S	S	S	М
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	W	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S-Strongly Correlated

M-Moderately Correlated

W-Weakly Correlated N–No Correlation

Semester-V/Core Course-XI	ASTRONOMY	Course Code:
Instruction Hours:6	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5-Evaluating	
	K5-Evaluating K6- Creating	
Course Objectives	 The Courseaims To introduce the exciting world of astronomy. To study spherical trigonometry in the field of astronomy. To conceptualize the structure of the solar system and the universe. 	
	 To classify the difference between the planets, stars and types of galaxie universe. To relate the earth, sun, galaxy with the universe. 	es in the
UNIT	CONTENT	HOURS
UNITI	SphericalTrigonometry Sphere –Secondaries – Spherical figures – spherical triangle –Polar	18 Hrs
	triangle – Cosine formula – Sine formula – Cotangent formula – Sublemental cosine formula – Napier's analogies –Napier's rules Relevantpropertiesofsphereandformulaeinsphericaltrigonometry –	
	Celestial sphere and diurnalmotion-Celestial coordinates- siderealtime. (Chapter I full, Chapter II:Article 39-69)	
UNITII	CelestialSphere Morning and evening stars-circumpolar stars- diagram of thecelestial sphere-zones of earth-perpetual day-dip of horizon- to find an expression for Dip – To find the distance between two mountains- Effects of Dip- Twilight – To find the duration of Twilight –To find the condition that Twilight may lost throughout night – To find the number of consecutive nights having Twilight throughout night – To find the duration of Twilight when it is shortest – Civil, nautical and astronomical twilights.(ChapterII:Article80-82,86,87,89,90,Sec5: Article106-109,Sec6:Article111-116)	18 Hrs
UNIT III	RefractionRefraction-lawsofrefraction-Astronomicalrefractiontangentformulaforrefractioncassini'sconstantsAandB-horizontalrefraction-Geocentricparallax:Parallaxhorizontalparallax.(Chapter IV:Article 117-120,129,130,131,ChapterV:Article135-145)	18 Hrs

UNIT IV	Kepler'sLawsKepler'slaws-verificationof1 and2lawsinthecaseofearth-Anomalies-Kepler's equation-Seasons-causes-kinds of years.(ChapterVI,VIIArticle173-175)	18 Hrs
UNIT V	TheMoonMoon-sidereal andsynodicmonths -elongation- phaseof moon- eclipses-umbra and penumbra-lunar and solar eclipses-eclipticlimits-maximumandminimum number of eclipses nearanodean dina year Saros.(Chapter XII: Article 229-241,ChapterXIII:Article 256-259, 269,273-275)	18 Hrs

1.Kumaravelu S and Susheela Kumaravelu, Astronomy for degree classes, 7th edition, SKV

Publishers, Nagercoil, 1986.

Reference Books:

- 1. M.L.Khanna, Sperical Astronomy, Jai Prakash and Co, 1983.
- 2. Dinah L.Moche, Astronomy: A Self Teaching Guide, Eighth Edition, Wiley Publications, 2014

Web – Resources: <u>https://nptel.ac.in</u>

Course Outcomes

On Completion of the Course, Students should be able to

- CO1 :perform calculations on celestial bodies.
- CO2 :compare our galaxy with other galaxies.
- CO3 : apply the principles and fundamental techniques of the astronomy.
- CO4 : analyze the size, age structure and motion of the universe over all using cosmological models.
- CO5 :understand the phases of moon and occurrence of Eclipses.

Mapping of Course outcomes with Programme Outcomes/Programme Specific Outcomes

CO/PO			РО	1					PSO		
	1	2	3	4	5	1	3 2	3	4	5	
CO1	S	S	М	W	М	S	М	М	М	М	
CO2	S	М	M		M	S	M	ME	S	M	
CO3	М	М	М	W	М	М	М	М	М	М	
CO4	S	S	М	W	М	S	М	М	М	М	
CO5	S	S	М	W	М	S	М	М	М	М	

S-Strongly Correlated

M-Moderately Correlated

W-Weakly Correlated

N–No Correlation

Semester- V/ Core Course- XII	MECHANICS	Course Code:
Instruction Hours:5	Credits: 4	Exam Hours:3
Internal Marks:25	External Marks:75	Total Marks:100

Cognitive Level	K1-Recalling K2 -Understanding K3-Applying K4 – Analyzing K5-Evaluating K6- Creating The Course aims	
Course Objectives	 To provide the basicknowledge about Equilibrium of a particle and ri To learn the effect of Hanging strings and Suspension bridge. 	gid bodies.
Ū	 To study the simple harmonic motions and projectiles. To know the concepts of Impact and Impulsive force. To handle practical problems in central objects and basics of moment 	
UNIT	CONTENT	HOURS
UNIT I	Equilibrium of A Particle And Forces On A Rigid Body Equilibrium of a Particle–Moment of aForce –General Motion of aRigid Body– Parallel Forces- Forces along the sides of a triangle -Couples. (Chapter3: Section3.1,Chapter4: Sections4.1,4.2,4.4,4.5,4.6)	12 Hours
UNIT II	Hanging strings Equilibrium of a uniform homogeneous strings–Suspension bridge– Simple Problems. (Chapter9:Sections 9.1 & 9.2)	12 Hours
UNIT III	RectilinearmotionsundervaryingforceandProjectilesSimple Harmonic Motion -S.H.M along a horizontal line -S.H.M.along a vertical line -Forces on a Projectile -Projected onaninclinedplane -enveloping Parabolaorboundingparabola.(Chapter 12:sections 12.1to12.3& 13.1to13.3)	12 Hours
UNIT IV	Impact Impulsive force–Impact of Spheres–Impact of two smooth spheres- Impact of a smooth sphere on a plane–Oblique impact of two smooth spheres.(Chapter 14:Sections14.1to14.5)	12 Hours
UNIT V	CentralOrbitsandMomentofInertia	12 Hours
	General orbits–Central orbit–Conic as a centered orbit-Moment of Inertia– Perpendicular and Parallel axes theorems. (Chapter16:Sections 16.1-16.3&Chapter17: 17.1)	

TextBooks:

P.Duraipandian,Laxmi Duraipandian and Muthamizh Jayapragasam, Mechanics S.Chand and

Company, New Delhi, 2007.

ReferenceBooks:

- 1. M.K.Venkatraman, Dynamics, Agasthiyar Publications, 11thEdition, 2004.
- 2. M.K.Venkatraman, Statics, A.Rajhan's Publications, 16thEdition, 1990.

Web–Resources: https://nptel.ac.in

Cours		Dutcomes
	0	n Completion of the Course,Students should be able to
CO1	:	understand the equilibrium of a particle in statics and dynamics.
CO2	:	Demonstrate theclear concept of Hanging strings and suspension bridge.
CO3	:	learn the concepts of rectilinear motion, simple harmonic motion and
CO4	:	projectile clarify the Impact of spheres and Impulsive forces.
CO5	:	Exhibit the concepts on Central Orbit and Moment of Inertia.

CO/PO			РО			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	W	S	М	М	S	S	S
CO2	S	S	М	W	S	S	М	S	S	М
CO3	S	S	S	W	S	S	S	S	S	S
CO4	S	S	М	W	S	S	М	S	S	W
CO5	S	S	М	W	S	S	М	S	S	М

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

S - Strongly Correlated

M - ModeratelyCorrelated

- W Weakly Correlated
- N No Correlation

Semester V / DSE I	DSE I - C PROGRAMMING THEORY	Course Code:
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level Course Objectives	K1-Recalling K2Understanding K3-Applying K4 - Analyzing K5-Evaluating K6- Creating The Course aims	
	 To understand Programming basics and the fundamentals of C To develop Mathematical and logical operations in C Using if statement and loops in C Program. 	
	Arranging data in arrays in C Program.To understand File management Techniques in C Program.	
UNIT	CONTENT	HOURS
UNIT I	Overview of C – Basic Structure of C programs – Constants, Variable & operators and Expression – Data types	12 Hours
	(Chapter 1 – Sec 1.4, Chapter 2 – sec 2.1 to 2.10), Chapter 3 – sec 3.1 to 3.16)	
UNIT II	(Chapter 1 – Sec 1.4, Chapter 2 – sec 2.1 to 2.10), Chapter 3 – sec 3.1 to3.16)Managing Input and Output Operators – Decision Making and Branching –Decision Making and Looping(Chapter 4 - Sec 4.1 to Sec 4.5, Chapter 5 – sec 5.1 to 5.9), Chapter 6 – sec	12 Hours
UNIT II UNIT III	 (Chapter 1 – Sec 1.4, Chapter 2 – sec 2.1 to 2.10), Chapter 3 – sec 3.1 to 3.16) Managing Input and Output Operators – Decision Making and Branching – Decision Making and Looping (Chapter 4 - Sec 4.1 to Sec 4.5, Chapter 5 – sec 5.1 to 5.9), Chapter 6 – sec 6.1 to 6.5) Arrays – Handling of character strings 	12 Hours
	 (Chapter 1 – Sec 1.4, Chapter 2 – sec 2.1 to 2.10), Chapter 3 – sec 3.1 to 3.16) Managing Input and Output Operators – Decision Making and Branching – Decision Making and Looping (Chapter 4 - Sec 4.1 to Sec 4.5, Chapter 5 – sec 5.1 to 5.9), Chapter 6 – sec 6.1 to 6.5) 	

E. BALAGURUSAMY, "PROGRAMMING IN ANSI C", TATA Mc Graw Hill, SECONOD EDITION, 2000.

Web–Resources:

- 1. <u>https://www.learn-c.org/</u>
- 2. <u>https://www.tutorialspoint.com/cprogramming/c_useful_resources.htm</u>

Course Outcomes :

On completion of the course, students able to

CO1: Develop a C program

CO2: Control the sequence of the program and give logical outputs

CO3: Store different data types in the same memory

CO4: Manage I/O operations in C program

CO5: Understand the basics of file handling mechanisms

Semester V / A	AEC II	AEC II - INTRODUCTION TO	Course Code:	
		ARTIFICIAL INTELLIGENCE		
Instruction Ho		Credits: 2	Exam Hours: 3	
Internal Mark		External Marks:75		
		ecalling		
Cognitive		nderstanding		
Level	-	Applying		
		K4 Analyzing		
		valuating		
	K6 C1	0		
		irse aims		
Course		To develop semantic-based and context-av	• •	-
Objectives	-	process, share and use the knowledge en		
		Research will aim to maximize automation	*	e e
		ifecycle and achieve semantic interoperab	ility between Web res	ources and
	S	ervices.		
UNIT		Content		No.of Hours
I		cial Intelligence: The AI Problems- The un		6 Hours
		nptions – What is an AI Technique Chapte		
II		ems, Problem Spaces and Search: Defin	•	6 Hours
		e space search- Production system- Proble	em Characteristics	
	Chapt	ter 2 – 2.1 to 2.3		
III	Knowledge Representation Issues: Representations and 6 Hours			6 Hours
	mappings - Approaches to knowledge representation - Issues in			
	Knowledge representation			
	-	ter 4: 4.1 to 4.3		
IV	-	olic Reasoning under Certainty:		6 Hours
		uction to Non monotonic Reasoning-	e e	
	monot	0 1	ntation issues	
	-	ter: 7- 7.1 to 7.3		
V	-	olic Reasoning under Certainty:		6 Hours
	-	enting a Problem Solver – Implementatio	n : Depth – First	
		n, Implementation: Breadth – First Search		
	_	ter: 7- 7.4 to 7.6		
Text Book		e Rich, Kevin Knight, Artificial Intelliger	nce - Second Edition, ,	i ata McGraw-Hill
		shing Company Limited, New Delhi	A 1 A	1.2.0.1
D 4		S.Russsel and P.Norvig, "Artificial Intellige	ence – A modern Appro	bach" Second
Reference	Edition, Pearson Education			
Books	2. Davil Poole, Alan Mackworth, Randy Goebel, "Computational Intelligence: a logical			
	a	approach", Oxford University Press		
e - Resources	1. ł	nttps://nptel.ac.in		
	 <u>http://mathforum.org</u>, <u>http://ocw.mit.edu/ocwweb/Mathematics</u>, 			
	2. <u>http://mathforum.org</u> , <u>http://ocw.mit.edu/ocwweb/Mathematics</u> , <u>http://www.opensource.org</u> , <u>www.mathpages.com</u>			
		,,,,,		

Semester-VI/ Core Course-XIII	COMPLEX ANALYSIS	Course Code:
Instruction Hours:5	Credits:4	Exam Hours:3
Internal Marks-25	External Marks-75	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying	
	K4 – Analyzing K5-Evaluating K6-Creating	
	The Course aims	
Course	• To lay a good foundation for complex analysis.	
Objectives	 To acquire the knowledge in elementary and bilinear transforma To explore the ideas of complex integration. To understand the expansions of series. 	utions.
	• To find the residues using poles.	
UNIT	Content	No.ofHours
I	Analytic FunctionsFunctions of complex variable – Limits –Theorems on limit – Continuousfunctions–Differentiability–The Cauchy-Riemann Equations–Analytic functions-Harmonic functions.(Chapter2:Sections2.1-2.8).	18 Hours
II	Bilinear TransformationsElementary transformations-Bilinear transformations-Cross ratio-Fixed points of bilinear transformations.(Chapter 3: Section 3.1-3.4)	18 Hours
III	Complex Integration Definite integral–Cauchy's theorem–Cauchy's integral formula –Higher derivatives.(Chapter 6: Section 6.1-6.4)	18 Hours
IV	Series ExpansionsTaylor's series-Laurent's series-Zeros of an analyticfunction-Singularities.(Chapter 7: Section 7.1-7.4)	18 Hours
V	Calculus of Residues Residues–Cauchy's Residue theorem –Evaluation of definite integrals.(Chapter 8: Sections 8.1- 8.3)	18 Hours

1. S.Arumugam, A.Thangapandi Issac, A.Somasundaram, Complex Analysis, Scitech Publications (India Pvt Ltd), Chennai, 2019.

ReferenceBooks:

1. P. Duraipandiyan, LaxmiDuraipandiyan, D. Muhilan, Complex Analysis, Emerald

Publishers, Channai, 1986.

2. T. K. Manikavachaagam Pillai, Complex Analysis, S. Viswanathan Printers and Publishers Pvt Ltd,2009.

Web-Resources:https://nptel.ac.in

Course Outcomes	On comp	On completion of the course, the learners will be able to		
	CO 1:	understand the basic concepts of Cauchy-Riemann equations in Cartesian and polarcoordinates.		
	CO 2:	interpret the analytic functions, harmonic functions, elementary and bilinear transformation concepts.		
	CO 3:	Apply the theorems using complex integration.		
	CO 4:	Expand the Taylor's and Laurent's series of functions.		
	CO 5:	Solve the definite integrals using the concepts of residues.		

Mapping of Course outcomes	with Programme	Outcomes & Programme	Specific Outcomes:
			······································

CO/PO		РО					PSO)		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	S	S	М	М	S	М
CO2	S	S	М	М	М	S	М	S	S	М
CO3	S	S	М	W	S	S	М	S	S	S
CO4	S	S	М	W	М	S	М	S	S	S
CO5	S	S	S	W	М	S	S	S	S	М

S-StronglyCorrelated M-ModeratelyCorrelated

W-WeaklyCorrelated

N-NoCorrelation

Semester VI / CC XIV	OPERATIONS RESEARCH WITH TORA	Course Code:
Instruction Hours:	Credits: 4	Exam Hours: 3
3 (Theory) + 2 (Practical)		
Internal Marks : 40	External Marks: 60	Total Marks: 100

Cognitive Level Course Objectives	K 1 Recalling K 2 Understanding K 3 Applying K4 Analyzing K5 Evaluating K 6 Creating The Course aims • To find the solution of the LPP using gra • To understand different types of LPP • To solve Transportation Problem using v	-
	 To introduce Assignment Problem and so To explore the concepts of Networn network construction 	olve it
UNIT	Content	No.of Hours
Ι	Linear Programming Problem: General Linear Programming Problem – Canonical and Standard form of LPP – Simplex method – Solving Simple Problems Using TORA (Chapter 3: 3.4 to 3.5, Chapter 4: 4.3)	12 Hours
II	LinearProgrammingProblem(Simplex Method):Dual Pair- Formulating a dual Problem- Duality and Simplex Method- DualSimplex Method.(Excluding Theorems)- Solving Simple Problems UsingTORA(Chapter 5: Section 5.2 - 5.3, 5.7, 5.9)	12 Hours
III	Transportation Problem:The Transportation Table –Loops in Transportation Tables –Triangular basis in TP –Solution of a Transportation problem –Finding an Initial Basic feasible Solution – Test for Optimality – Transportation Algorithm	12 Hours

	(MODI Mathad) Salving Simple	[]	
	(MODI Method) – Solving Simple Problems Using TORA		
	(Chapter 10: Section 10.5-10.10 &		
	10.13)	10 11	
IV	Assignment problem:	12 Hours	
	Mathematical formulation of the		
	problem – Solution methods of		
	Assignment algorithm – The Travelling		
	Salesman Problem – Solving Simple		
	Problems Using TORA		
	(Chapter 11: Section 11.2 - 11.3 &		
	11.7)		
V	Network Scheduling by PERT/	12 Hours	
	CPM:		
	Network and Basic Components –		
	Logical Sequencing –Rule of Network		
	Construction - Concurrent Activities -		
	Critical Path Analysis – Probability		
	considerations in PERT –Distinction		
	between PERT and CPM – Applications		
	of Network Techniques – Solving		
	Simple Problems Using TORA		
	(Chapter 25: Section 25.2 - 25.9)		
Lab Exercise	1. Solving Linear Programming	12 Hours	
	Problem –Simplex method using		
	TORA		
	2. Solving LPP in Dual Simplex		
	method		
	3. Solving Transportation problem by		
	MODI method.		
	4. Solving Assignment problem		
	5. Finding optimum solution of		
	network scheduling by PERT/CPM		
	method.		
T (D)			
Text Book	Kanti Swarup, P.K. Gupta and Man Mohan, Operations		
	Research, Sultan Chand and Sons, Educati	onal Publishers, New	
	Delhi, 2014.		
	1. V. Sundaresan, K. Ganesan, Resource M	anagemant Techniques,	
Reference Books	A.R. Publications, 2002.		
	2. J.K.Sharma, Operations Research T	Theory and Applications	
	Macmillan India Ltd, 3rdedition, 2006.		

Course Outcomes	CO 1: analyze and solve linear programming models of real life
	situations
	CO 2: understand the problem solving method of Simplex and Big
	M Method.
	CO 3: exhibit the applications of Transportation Problem
	CO 4: solve Assignment problems
	CO 5: use PERT and CPM techniques in solving Network Analysis
	problems

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W - Weakly Correlated

N - No Correlation

Semester-VI /CC XV	GRAPH THEORY	Course Code:
Instruction Hours:5	Credits:4	Exam Hours:3
Internal Marks-25	External Marks-75	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating	
Course Objectives:	 To understand the basic concepts of the graphs. To learn the various operations and degree sequences of graphs. To discuss the properties of Eulerian, Hamiltonian graphs and trees. To know about the planar graphs. To gain the knowledge of colourability of the graph. 	
UNIT	CONTENT	HOURS
Unit I	Graphs and Subgraphs: Introduction–The Konigsberg Bridge problem–Definition and examples–Degrees –Subgraphs–Isomorphism. (Chapter1:Sections1.0,1.1 and Chapter2:Section 2.0-2.4)	12Hours
UnitII	Matrices and Degree Sequences: Introduction - Matrices–Operations on graphs–Degree Sequences and Graphic Sequences–Walks, trials and paths – Connectedness and components.(Chapter 2:Sections 2.8 & 2.9,Chapter 3:Sections3.0 - 3.2and Chapter 4: Sections 4.0-4.2)	12 Hours
Unit III	 Eulerian and Hamiltonian graphs, Trees: Introduction – Eulerian Graphs–Hamiltonian graphs– Characterization of Trees–Centre of a tree. (Chapter 5: Sections 5.0- 5.2 and Chapter 6:Sections 6.0- 6.2) 	12 Hours
UnitIV	Planar Graphs: Introduction–Definition and properties–Characterization of Planar graphs. (Chapter 8:Section 8.0–8.2)	12 Hours

UnitV	Colourability:	12 Hours
	Introduction -Chromatic number and chromatic index -The Five	
	Colour Theorem-Four colour problem-Chromatic polynomials.(Chapter	
	9:Section 9.0 –9.4)	

1.S.Arumugam and S.Ramachandran, Invitation to Graph Theory, New Gamma Publishing House, Palayamkottai (2013).

ReferenceBooks:

- 1. Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New York (2006).
- 2. S.Kumaravelu, Susheela Kumaravelu, Graph Theory, Janki Calender Corporation, Sivakasi (1999).

Web-Resources: <u>https://nptel.ac.in</u>

CourseOutcomes:

On completion of the course the learner will be able to

CO1: understand the concepts of graphs upto isomorphism.

CO 2: acquire the knowledge of degree sequences, connectedness and components of graphs.

CO3: demonstrate the characterization of Eulerian, Hamiltonian and trees.

CO4: interpret the planarity of graphs.

CO5: identify the chromatic number, index and polynomial of a graph.

Mapping of Course outcomes with Programme Outcomes & Programme Specific Outcomes:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W - Weakly Correlated

N - No Correlation

Semester-VI / DSE II		DSE II - C PROGRAMMING PRACTICAL	Course Code	:	
Instruction Ho	urs: 3	Credits: 3	Exam Hours:	3	
Internal Marks	:: 40	External Marks: 60	Total Marks:	100	
Cognitive Level	K 1 - Recalling K2 - Understa K3 - Applying K4 - Analyzing K5 – Evaluatin K6 - Creating	5			
Course Objectives					
UNIT	0	CONTENT		Hours	
Programs	 Sum of see Ascending Largest an Sorting na Finding fa functions. Matrix M 	Quadratic Equation. ries (Sine , Cosine , e ^x) g and descending order of numbers nd smallest of given numbers. ames in alphabetical order. actorial, generating Fibonacci numb anipulations (Addition , subtraction andard Deviation and Variance.	pers using recursive		

Semester VI / DSE III	MATHEMATICAL MODELLING WITH EXCEL	Course Code:
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 40	External Marks: 60	Total Marks: 100

Cognitive Level	 K 1 Recalling K 2 Understanding K 3 Applying K4 Analyzing K5 Evaluating K 6 Creating The Course aims 	
Course Objectives	 To find optimal solution in decision Making Problems using 	ng Excel.
UNIT	Content	No. of Hours
Programs	 Find the best fit line for a set of data in four different ways using Least Square Method. Find optimal solution to making fruit baskets. Find requirements and minimize the cost in diet problem. Find minimum cost in Delivering Bread as in Transportation Problem. Find optimal Solution in Delivering Breadasin Assignment Problem. Find optimal solution in Home improvement decisions Problem. Generate a Sensitivity Analysis report on Fruit Basket Problem. Maxmize f(x) = -x² + 4x under Gradient Method. 	
Text Book	Brain Albright, Mathematical Modelling with Excel.	

Semester VI/ AEC III	AEC III - QUANTITATIVE APTITUDE	Course Code:
Instruction Hours:2	Credits: 2	Exam Hours:3
Internal Marks-25	External Marks-75	Total Marks: 100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating	
Course Objectives:	 To learn puzzles To know the time series problems. To study the arithmetical reasoning problems. To identify the missing character. To get the logical ability 	
UNIT	CONTENT	HOURS
Unit I	Problems on Puzzles Blood Relation: Deciphering jumbled up descriptions–Relation Puzzle–Coded Relations. (P.No. 220 – 241)	6 Hours
Unit II	Mathematical Operations: Problem Solving by Substitution–Interchange of signs and numbers– Deriving the appropriate conclusion. (P.No. 432 –454)	6 Hours
Unit III	Arithmetical Reasoning Calculation based Problem–Data based question–Problem on ages – Venn diagram based questions. (P.No. 459–474)	6 Hours
Unit IV	Puzzles on Missing Characters Inserting the Missing character. (P. No.475– 492)	6 Hours

Unit V	Logical Reasoning Data sufficiency–Logical Sequence of Words (No.495 – 506,	6 Hours
	455–458,)	

R.S. Agarwal, A Modern approach to Verbal and Non-Verbal Reasoning, S.Chand& Company Ltd, New Delhi-55.

Reference Books:

- 1. <u>Dinesh Khattar</u>, The Pearson Guide to Quantitative Aptitude for Competitive Examinations, Pearson Publications, 2014.
- 2. Arun Sharma, Teach Yourself Quantitative Aptitude, McGraw Hill Education, 2017.

Web-Resources:

1. https://www.splessons.com/lesson/profit-loss-problems/

Course Outcomes:

On completion of the course the learner will be able to

CO1: solve the problems on series.

CO2: write the coding and decoding.

CO3: evaluate problems on blood relation

CO4: solve mathematical puzzles

CO5:compute problems using venn diagram.

Semester-VI/SEC-	DOCUMENT PREPARATION SYSTEM	Course Code:
	USING LATEX	
Instruction Hours:2	Credits:2	Exam Hours:3
Internal Marks-40	External Marks-60	Total Marks:100

Cognitive Level	K1-Recalling K2 –Understanding K3-Applying K4 – Analyzing K5 – Evaluating K6-Creating	
Course Objectives:	 To introduce the fundamentals of Latex. To know the symbols and arrays in Latex. To study the commands and floating body in Latex. To know the of table of contents, sections and paragraphs. To understand the page breaking, numbering and listing environment . 	
UNIT	CONTENT	HOURS
Unit I	Introduction: Preparing Inputs – Sentences and Paragraphs (Quotation mark,dashes,Spaceafteraperiod,Special Symbols and Simple text Generating Commands).	6Hours
Unit II	Sectioning the document: Document classes – Sectioning – Changing the text style – Accents, Symbols – Mathematical Formulas and Symbols – Arrays – Delimeters and Multiline Formulas.	6Hours
Unit III	Commands and Floating Bodies: Defining commands and environments–Figures and Floating Bodies – marginal Notes –Liningup in Columns.	6Hours
Unit IV	TableofcontentsandCitations:Creating Table of Contents–Cross References–Bibliography and Citations – Splitting Your Input – Making Indexand Glossary– Keyboard Input and Screen Output.	6Hours

Unit V	Pagebreakandnumbering:	6Hours
	Slides and Overlays – Notes – Printing only some slides and	
	Notes - Letters - Lining and Page Breaking - Numbering -	
	Length, spaces and boxes – Listmaking Environments.	

A Document PreparationSystem Latex, By Leslie Lamport, Addison-Wesley Publications, 1994.

ReferenceBooks:

- 1. Stefan Kottwitz, Latex Beginner's Guide: Create high-quality, professional-looking documents and books for business and science using LaTeX, Packt Publishing, 2011.
- 2. S. Swapna Kumar, LATEX A Beginner Guide to Professional Documentation, Laxmi Publications Pvt Ltd, 2020.

181MARI

Web-Resources: <u>https://nptel.ac.in</u>

Experiment:

- Creating a document.
 Creating table of contents ina document.
- 3. Numbering and alignment of a document.
- 4. Writing mathematical equations.
- 5. Inserting footnotes, header and footer.
- 6. Creating matrices.
- 7. Creating tables.
- 8. Drawing graphs.
- 9. Inserting diagrams, pictures and graphs.
- 10. Creating bibliography.

Course Outcomes:

On completion of the course the learner will be able to

CO1:	Interpret the fundamentals of Latex.
CO2:	Apply the symbols and arrays In Latex.
CO3:	Compile the commands and floating body in Latex.
CO4:	Write tableof contents, sections and paragraphs.
CO5:	put pagebreak, number the contents and list the environment.